
Auctus Technical Paper
Version 1.0 - 6 February 2018

Felipe Silveira, Ariny Guedes, Thiago Araújo, Daniel Figueiredo

1 – Platform Architecture Overview
Our main architectural goal at Auctus is to build a platform which is able to sustain high
traffic of a global user base. Therefore, the platform should be able to proper escalate on
heavy load moments and, thus, guarantee a fluid and robust experience for our users or API
consumers.

Auctus development team, based on previous experiences of similar platforms and market
best practices, carefully evaluated the best development practices combining cloud /
containerized computing, micro-services and the emerging Ethereum Network technologies.

Cloud Specific Implementation vs Containerized Microservices
Despite the fact that for strategic purposes, we have chosen to host our platform at Microsoft
Azure, we believe that it is a good practice to be technology-agnostic . This approach will

1

guarantee that our entire platform can be fully migrated to a new cloud provider, or every
single module / service can have a painless and seamless technology update if needed.

The overview of this architecture is depicted in the diagram below:

1 Newman, S. (2015). Chapter 4: Integration In ​Building microservices ​(pp 39-78). Sebastopol (CA):
OReillyMedia

Auctus Platform FrontEnd
The Auctus Platform front end will be
built for both web and mobile devices.

The web platform will be built using
Angular 5.

At first, the mobile platform will be built
natively for iOS and Android powered
devices, however, for development time
reduction, we will create some POCs in
order to evaluate cross-platform
solutions like Xamarin, Ionic or React
Native.

Both web and mobile clients will be built
as a thin client and will have access to

Auctus business layer through a API Gateway which will be described in more details next.

Authentication & Authorization
The user authentication will be performed
in two ways:

OAuth2 SSO for platform off-chain access
and METAMASK for accessing Ethereum
Network integration features.

The Auctus platform will provide different
usage plans for its users, and the
authorization (the ability of users to
access different features of the platform)
will be a combination of a profile schema
and AUC token escrow.

API Gateway
The API Gateway will provide an
integration abstraction layer which will
expose, through RESTful APIs, all the
services needed to interact with the
platform backend.

The API Gateway layer will be an
important tool to manage our set of
services, and will also provide a set of
features which will help us to secure,
control and scale our APIs.

These management features include:

● Service Authentication
○ Private API for Auctus FrontEnd
○ Public API for Robo Advisor API

● Response Caching
● Service Transformation
● Request Logging, Usage, Performance and Health Analytics
● API Versioning

Auctus Platform Microservices
The backend module of Auctus platform
will consist of a set of microservices
developed using the ASP.NET Core
framework and hosted on docker
containers.

This module provides the services to
support the mobile app and web
application. It will be built under the
premises of DDD (domain driven design)
in order to provide decoupling and domain
data ownership.

It will contain the rules for server
operations related to the platform, such as
portfolio creation and performance
tracking.

Portfolio Performance
Microservices
To track historical performance of
recommended portfolios, it is necessary
to get information from outside the
platform. The portfolio results module
will get market information using
third-party APIs like:

● Exchange API for cryptocurrency
historical values

● Market history API for traditional
assets.
Due to the schemaless characteristic of
the retrieved data, summed with the
potential size of some years of historical

information and the need of normalization, the data collected in this module will be stored on
a Non-Relational Database (NoSQL).

This data is intended to be used for historical charts in the platform.

At first, we will be using the document-based database MongoDB, which will provide us
JSON (BSON) normalization of the retrieved data, facilitating the integration with chart
components.

Off Chain Async Transactions
This layer will be responsible for providing
decoupling between the microservices
layer and the Ethereum network
integration.

The main objective of this layer is to
improve the Auctus’ Platform user
experience and guarantee transaction
deliver.

Through asynchronous transaction
integration to the blockchain, we will
prevent locks, (which could cause
response delays) and, therefore, improve
the response time of the application.

This approach will make the solution more scalable and resilient to eventual Ethereum
network instability or heavy load.

Ethereum Sync Module
(On-Chain Transactions)
This module, which will be built using
NodeJS and web3.js for Ethereum
Network integration, will consist of two
parts:

Serverless Event-Based
Transaction Processing​:
Responsible for receiving a message
from the queue and sending the
transaction to the Ethereum node.
After posting the transaction and
retrieving its ID and metadata, this
processor will invoke an API to consist
that information into Auctus database.
In order to guarantee the optimum

usage of our infrastructure, we will be using serverless event processing (e.g. Azure
Function, AWS Lambda).

Transaction Status Check:
Responsible for pooling the Ethereum node checking the pending transaction status until
they are completed. After completion, this processor will invoke an API to update the
transaction status.

Advice Match Mechanics:
Some of the application information will be stored in smart contracts, developed using
Solidity.

Payments for advice will be made using smart contracts, as well as the portfolio projection
values.

A smart contract-based oracle service, such as Oraclize (​http://www.oraclize.it/​) will be used
to collect the real portfolio performance after a defined period. This information will define if
the tokens locked for advice payment will either be transferred to the advisor (in case the
advice was good, meaning that results met predictions) or redeemed by the customer (in
case of bad advice).

http://www.oraclize.it/

Container Management and Auto
Scaling
This layer will be responsible for the
DevOps of Auctus’ microservices
environment.

We will use Kubernetes to manage the
Docker containers, provide auto-scaling,
configuration management and automated
deployment.

Robo Advisor Public API
The API gateway layer will provide a
public API, that will enable Auctus’
Platform users and third party financial
specialists to connect Robo advisors,
which will be available at our
marketplace.

2 – Smart contracts
The backend of the Auctus Platform is built upon the Ethereum Blockchain using smart
contracts developed using the Solidity programming language as the main mechanism to
provide automation, transparency and a result-oriented fee structure.

The three main smart contracts that compose the solution are the following:

The AUC token smart contract

The smart contract that defines the AUC token is compliant with the ERC-20 and ERC-223
standards.

The AuctusEscrow main smart contract

The AuctusEscrow smart contract is used for locking or redeeming AUC tokens. This feature
is used for accessing the platform.

The AuctusPlatform smart contract

The AuctusPlatform smart contract interacts with the token and escrow contracts. It is the
main smart contract of the platform, used for recording the projections made by financial
advisors. It orchestrates the purchase of products and services using the AUC tokens in the
decentralized marketplace taking into consideration other business rules such as the
matching of predictions with real results.

Use cases illustration

3 - Technology-specific disclaimer
Technology is changing rapidly. The description above is based on Auctus current
development and on the current state of technology. The described architecture and solution
will be implemented in an incremental manner and might not be fully developed in the first
releases. The presented examples of code are purely for illustration purposes. Auctus
development team reserves the right to change approaches, architecture and use of smart
contracts in case the team finds more suitable options to solve the technical needs of the
platform in future releases.

